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Recurrence of task-related 
electroencephalographic activity 
during post-training quiet rest and 
sleep
Michael Murphy1,2, Robert Stickgold1,3, Mittie Elaine Parr   1,3, Cameron Callahan1,3 &  
Erin J. Wamsley4

Offline reactivation of task-related neural activity has been demonstrated in animals but is difficult to 
directly observe in humans. We sought to identify potential electroencephalographic (EEG) markers of 
offline memory processing in human subjects by identifying a set of characteristic EEG topographies 
(“microstates”) that occurred as subjects learned to navigate a virtual maze. We hypothesized that 
these task-related microstates would appear during post-task periods of rest and sleep. In agreement 
with this hypothesis, we found that one task-related microstate was increased in post-training rest 
and sleep compared to baseline rest, selectively for subjects who actively learned the maze, and not 
in subjects performing a non-learning control task. Source modeling showed that this microstate was 
produced by activity in temporal and parietal networks, which are known to be involved in spatial 
navigation. For subjects who napped after training, the increase in this task-related microstate 
predicted the magnitude of subsequent change in performance. Our findings demonstrate that task-
related EEG patterns re-emerge during post-training rest and sleep.

A robust body of animal literature suggests that task-related patterns of brain activity are “replayed” during sub-
sequent periods of quiet rest and sleep. When rodents navigate a maze, a particular hippocampal “place” cell will 
selectively fire when the animal is in a particular part of the maze1. Thus, as the animal moves through the maze 
there is a sequence of place cell firing that corresponds to its path through the maze. These patterns of neural 
firing are replayed during sleep and rest2–4. This hippocampal replay is associated with concomitant replay in the 
cerebral cortex5, and may be important for the transfer of information from short-term storage in the hippocam-
pus to longer-term storage in the cortex. In rodents, replay has been observed primarily during NREM sleep 
(corresponding to stage N2 and N3 sleep in humans) and drops off quickly with time elapsed since sleep onset3,5,6.

There has been little direct evidence for an analogous process of offline memory “reactivation” in humans, 
in large part due to technical limitations. Widely used neuroimaging techniques such as PET and fMRI lack the 
spatial and temporal resolution to characterize patterns of activity at the cellular level in the same manner that 
these effects have been described in rodents. However, there is evidence suggesting that replay-like phenomena 
may occur in humans. First, multiple neuroimaging studies have shown that brain activity during periods of rest 
and sleep is shaped by prior learning experience7,8. Furthermore, in several studies the magnitude of these effects 
has been shown to predict subsequent memory performance9–11. For example, PET-defined reactivation of hip-
pocampal activity during sleep following training on a virtual maze navigation task has been shown to predict 
overnight improvement on the task as has increased slow wave activity in task-related regions9,12. Complementing 
this work, cognitive studies have shown that learning a task influences the content of subsequent thoughts, mental 
imagery, and dreams13,14, which in turn can predict subsequent task improvement15.

In the current study, we asked whether similar experience-dependent changes in resting state brain activity 
might be observable using electroencephalography (EEG). Prior investigations have demonstrated that slow wave 
activity during sleep shows localized experience-dependent increases during N2 and N2/N3 combined sleep12,16. 
Furthermore, multivariate pattern classification has been used to classify sleep EEG data based on the content of 
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prior visual experience17. However, EEG has not previously been used to assess the reactivation of task-related 
brain activity during post-learning rest. In this study, we examined memory processing related to learning a com-
plex spatial navigation task. Previous work with this task suggested an important role for N2 sleep18. Because of 
this, and in combination with evidence that memory reactivation is strongest immediately following experience, 
we hypothesized that experience-dependent changes in resting state brain activity would be largest during quiet 
rest and N2 sleep immediately following training on the task.

We applied the technique of “microstate analysis” to this question, identifying spatial patterns of scalp EEG 
activity associated with training on a virtual maze navigation task, and tracking the persistence of these EEG pat-
terns across subsequent periods of rest and sleep. Microstate analysis offers the unique ability to simplify millions 
of samples of time-series EEG data to a small number of repeatedly recurring scalp voltage topographies called 
microstates19,20. This analysis focuses on the spatial pattern of voltage across the scalp, as opposed to traditional 
spectral analysis, which focuses on the frequency of oscillations. Microstates have been proposed to reflect the 
semi-stable integrated activity of large-scale functional networks which give rise to sequential episodes of con-
sciousness21. We hypothesized and then confirmed that task-related EEG topographies (microstates) recur during 
subsequent periods of quiet rest and sleep.

Materials and Methods
Subjects.  Subjects (n = 78, 33 women, ages 18–30) were English-speaking students recruited from local col-
leges and universities using online advertisements. Informed consent was obtained from all subjects. Subjects 
agreed to keep a regular sleep schedule for three nights prior to the study and obtain a minimum of 6 hours of 
sleep on average during those three nights, as documented by a retrospective sleep log completed at the study 
visit. Subjects also agreed not to consume caffeine after 10 am on the day of the study. We excluded individuals 
who reported a diagnosis of sleep or psychiatric disorders and individuals who took medications known to inter-
fere with normal sleep or cognition. We also excluded individuals who had already participated in a study that 
used the Virtual Maze Task. In previous studies using this task, we found that individuals with only very limited 
experience playing spatial navigation video games did not reliably learn the task in the time allotted18. Therefore, 
in this study we excluded individuals who reported playing 3D style video games less than once a year.

Seven subjects enrolled but failed to complete the study. Data from fifteen subjects was not analyzed because 
they either fell asleep during quiet rest periods or did not nap during nap periods (described below). Data from 
fifteen additional subjects was not analyzed due to persistent EEG artifact (defined as more than 5 bad elec-
trodes that could not be corrected with spline interpolation). Ultimately, data from 41 subjects (18 female, mean 
age = 20.6 years, ±1.5 years) were analyzed for this study.

Task.  All study procedures were approved by the Committee on Clinical Investigations which is the institu-
tional review board for the Beth Israel Deaconess Medical Center. All experiments were performed in accordance 
with relevant guidelines and regulations. The Virtual Maze Task (VMT) is a spatial navigation task in which sub-
jects use a computer keypad to navigate through a complex maze environment (Fig. 1A). During a five-minute 
exploration period, subjects are placed at the maze exit and instructed to learn the layout of the maze as well as 
possible, so they will be able to navigate to the maze exit as quickly as possible during subsequent tests. There 
are then three test trials, each beginning from a different point in the maze equidistant from the exit (order of 
starting points counterbalanced across subjects). If subjects fail to reach the exit within 10 minutes, the trial 
is ended and a new trial is begun. At retest, three additional trials are conducted. Performance on each trial is 
assessed in terms of both the time taken and distance traveled to reach the exit. We also calculated the number of 
unique positions encountered while navigating the maze and the amount of backtracking (1-(unique positions/
distance traveled))22. Improvement is calculated as the change in performance from the last training trial to mean 
performance at test. Therefore, a positive change from training to test reflects deterioration and a negative change 
reflects improvement.

Instead of performing the maze task, subjects in the non-learning Control group completed the Psychomotor 
Vigilance Task (PVT23), a simple measure of vigilance in which participants are asked to press a key whenever 
a red dot appears on the computer screen. The PVT measures reaction-time and is not susceptible to learning 
effects24. The number of PVT trials completed was yoked to the duration of maze training in the learning group 
on a subject-by-subject basis in order to equate on-task time across groups.

Procedure.  The study design is illustrated in Fig. 1B. Subjects were divided into three groups: a “Nap” group, 
“Wake” group, and “Control” group. All three groups began by performing the Psychomotor Vigilance Task 
(PVT). This ensured that all subjects were in a similar state at the start of the experiment. Following the PVT, 
there was a seven minute period of baseline eyes-closed quiet rest for all subjects. The Nap group (n = 14, mean 
age = 21.2, ±1.4 years s.e.m.) then trained on the Virtual Maze Task (VMT) followed by a second period of quiet 
rest and then a 90-min nap opportunity. Following the nap period, these subjects were retested on the VMT. The 
Wake group (n = 13, mean age = 20.3, ±1.7 years) trained on the VMT as above, but did not nap following the 
second rest period and instead watched preselected PG-rated movies and ate lunch. The Control group (n = 14, 
mean age = 20.2 years, ±1.4 years) did not train on the VMT, but instead performed additional PVT trials as 
described above. Control subjects also had a 90 minute nap opportunity after which they were then trained and 
tested on the VMT.

The PVT was chosen as the control task because it has a minimal learning curve with skill acquisition com-
plete after 1–3 trials23. Therefore, any PVT learning occurs early in the initial PVT block, which all subjects per-
form, with no further learning during subsequent (Control only) PVT blocks.
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Recordings and Analysis.  Throughout the duration of the study, 60 channels of EEG were recorded using 
a 64-channel Grass-Telefactor Aura system, sampling at 400 Hz. EEG data were preprocessed by manual artifact 
rejection, 0.5–40 Hz band-pass filtering, spline interpolation of bad channels (average of 1.5 channels per subject), 
and average referencing. Sleep was scored according to the standard criteria of the American Academy of Sleep 
Medicine25. Microstate analysis focused on stage N2 sleep because in previous work we showed that post-nap 
improvement in the VMT was correlated with EEG delta power during N2 sleep18. In addition, the vast majority 
memory reactivation studies in rodent models have described replay effects in NREM, rather than REM sleep26.

Segments of data with ocular artifact were identified by visual inspection of the data. These segments were 
removed. Spectral analysis was performed in MATLAB using Welch’s method with a Hanning window of 
4 seconds with 50% overlap (Mathworks, Natick, MA). Linear regression calculations were also performed in 
MATLAB.

SnPM suprathreshold cluster tests were used to compare the scalp topography across experimental group, 
behavioral state, and frequency band27. In this method, study data are randomly assigned to group across thou-
sands of iterations. For each iteration, between-group t-tests are generated for each channel and compared to a 
predetermined threshold value. The number of contiguous channels that exceed this threshold is the cluster size 
for that iteration. This is repeated thousands of times to create a null-distribution of cluster sizes. The cluster size 
of the correctly grouped data is then compared against this distribution.

Microstate Analysis.  Microstate analyses model spatial patterns in the EEG over an extended recording 
period as a series of transitions between a small number of topographies that explain the majority of the spatial 
variability. This is done by applying a simple cluster analysis to a time series of scalp topographies. Microstate 
topographies are derived from repeated unbiased randomly-seeded cluster analyses of the EEG recordings and 
therefore are not dependent on any neurobiological assumptions19,28. We extracted EEG microstates from task 
data using widely employed methods, implemented in the Cartool software by Denis Brunet (brainmapping.

Figure 1.  (A) Virtual maze task. The left panel shows the layout of the virtual maze. (Subjects never see this 
view). The right panel shows one view from within the maze, as it appears to subjects. (B) Experimental design. 
All subjects begin by performing the psychomotor vigilance task (PVT) as a baseline control at 12 pm. Then, 
after a seven minute period of quiet rest, one group of subjects performs the PVT again, and the remaining 
subjects train on the virtual maze task (VMT). Following the VMT or PVT, there is another seven minute rest 
period, after which half of subjects who completed the VMT training and all of the PVT control subjects are 
allowed a 90 minute nap opportunity. At 4:30 pm, two hours after the completion of this nap/rest period, all 
subjects are tested on the VMT. (C) Task performance. Three bar plots showing average time to navigate the 
maze, average amount of distance traveled before reaching the exit, and proportion of steps that were back-
tracking for subjects who napped (red circles) and wake subjects (blue circles).
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unige.ch/cartool). We downsampled our data by selecting time points corresponding to peak global field power 
(GFP) because previous work has demonstrated that microstate topography is stable around time points corre-
sponding to peaks in the GFP function and that transitions between microstates selectively occur at time points 
corresponding to local GFP minima20,29.

This data was then run through a k-means analysis (where k ranged from 1 to 10) to extract potential micro-
states repeated 300 times. We used the Krzanowski-Lai criterion to determine the number of microstates both 
because this method is also widely used in the literature and also because it provides an unbiased estimate30–32.

Once we characterized the EEG microstates during maze training, we determined how well these topogra-
phies matched the EEG data during pre-training rest, post-training rest and N2 sleep by calculating the Global 
Explained Variance (GEV). GEV is calculated by measuring how closely the EEG topography at each time point 
matches one of the maze training microstates. In this way, GEV represents the amount of topographic variance 
in the rest and sleep EEG recordings that can be accounted for by the microstates that were present during maze 
training29. Thus, the higher the GEV, the more the rest and sleep EEG “match” the maze-training microstates.

We hypothesized that task-related microstates would explain more of the signal (higher GEV) in post-training 
rest and sleep, in comparison to pre-training rest. Thus, throughout the results, GEV is presented as a measure of 
the degree to which the EEG topography during rest and sleep matches the set of microstates present during maze 
training. Statistical non-parametric mapping (SnPM) map-wise tests were used to identify statistically significant 
changes in microstate global explained variance27. In these analyses, the data from each subject consisted of the 
list of GEVs for all of the microstates and the permutations were performed on the lists of GEVs.

Source modeling.  Source modeling analysis was performed using the LORETA-KEY software, using a 
three-shell spherical head model derived from a magnetic resonance image of an individual whose head closely 
approximates the Montreal Neurological Institute head (“Colin 27”). A standard, co-registered set of electrode 
positions was used for the construction of a forward model. Standardized low resolution electromagnetic topog-
raphy (sLORETA) was used to model cortical current sources33.

Results
EEG Microstates.  Analysis of EEG collected during VMT training in the Nap group produced six microstate 
topographies, which together explained 71% of the topographic variance in the EEG signal during training. We 
then fit this set of training microstates to the EEG during baseline rest, post-training rest, and subsequent nap 
N2 sleep. There was no significant difference across behavioral states in total GEV explained by the entire set of 6 
training microstates (72% in baseline pre-training rest, 73% in post-training rest, and 75% in N2 sleep).

In fitting these task-related microstates to baseline rest, post-training rest and sleep, we observed that one state 
became significantly more prevalent during both rest and sleep after training, in comparison to baseline rest. This 
training-related microstate (Microstate MTR [training-rest]; see gold box in Fig. 2A) showed a statistically signif-
icant increase in GEV from baseline rest to post-training rest for both raw (SnPM, p = 0.006, Cohen’s d = 0.30) 
and percentage change (38% increase; t-test, p = 0.001). MTR increased even more in subsequent N2 sleep (SnPM, 
p = 0.0009, Cohen’s d = 0.24, 56% increase) (Fig. 2B, top). The increase in MTR from pre-training to post-training 
rest also was strongly correlated with how much MTR occurred during training (r14 = 0.80, p = 0.0006).

Importantly, this post-training increase in MTR was task-specific; when this same set of microstates was fit to 
data from the Control group, none of the microstates showed a statistically significant difference in GEV between 
baseline and post-training rest (SnPM, minimum p = 0.93) or between post-training rest and N2 sleep (SnPM, 
minimum p = 0.06) (Fig. 2B, bottom). The selective increase of MTR following maze training is substantiated by 
significant group (Nap vs Control) x time (pre vs. post) ANOVA interaction effects for MTR’s increase in both 
post-training rest (F1,26 = 4.42, p = 0.045) and subsequent N2 sleep (F1,26 = 6.06, p = 0.021).

As a control, we then repeated this analysis, deriving microstates from the control PVT task. None of the 
microstate topographies present during the PVT increased during post training rest or sleep, in either the Nap or 
Control groups.

In contrast, the Wake group, who also trained on the VMT, showed a strongly similar training-related micro-
state that increased during post-training rest. We derived VMT microstates using data from the Wake group. As in 
the Nap analysis, we found six microstates in the Wake group VMT training data. One microstate, MTRW, strongly 
resembled MTR (Pearson’s r = 0.85 between microstate map voltage topographies). MTRW also increased signifi-
cantly from pre- to post-training rest (70% increase, t-test, p = 0.033). The increase in MTRW from pre-training 
to post-training rest also was strongly correlated with how much MTRW increased during training (r13 = 0.76, 
p = 0.003).

We hypothesized that MTR and MTRW were capturing similar VMT-related brain activity, and that therefore 
these microstates would show post training increases in quiet rest even when fit to the other maze-trained group. 
As expected, we found that MTR increased significantly following training in the Wake group (50% increase, 
one-sided t-test p = 0.049) and MTRW increased significantly following training in the Nap group (107% increase, 
one-sided t-test p = 0.037).

Although our primary approach was to describe maze-related microstates separately for each group of sub-
jects (“MTR” in the Nap group and “MTRW” in the wake group), our presumption is that these group-specific 
microstates reflect the same underlying brain activity in both groups. This presumption is supported by the top-
ographic similarity MTR and MTRW, and the fact that both show a similar increase following maze training. Thus, 
in order to maximize the reliability of the microstate model, we also calculated training-related microstates in 
the combined Nap + Wake sample, taking advantage of the increased sample size offered by this approach. The 
resulting set of microstates included one, MTRC, that closely resembled both MTR and MTRW (Fig. 2A) (Pearson’s r 
across 60 EEG channels = 0.87 and 0.99 respectively). MTRC increased in post training rest for the pooled groups 
(71% GEV increase, t-test, p = 0.0001). MTRC also increased during post-training rest in the Nap group and the 
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Wake group when they were analyzed independently (Nap: 77% increase, t-test, p = 0.024; Wake: 65.0% increase, 
t-test, p = 0.032).

A second VMT-derived microstate, which accounted for the smallest portion of the variance in every state, 
also increased in N2 sleep but not in post-training rest. However, this increase was seen for both the VMT and 
Control groups (t-test, p = 0.004 and p = 001 respectively; Fig. 2B, Microstate 6) and thus was not learning 
specific.

Microstate Topography.  Many previous studies of EEG microstates have reported four canonical micro-
states during rest and task performance20,34–39. In our task data, we found more than four microstates for both 
the VMT and control tasks. This may be related to the nature of the complex cognitive tasks that subjects were 
performing, or alternatively to the high-density EEG net that we used, or to the method by which we selected 
the number of microstates. Nonetheless, the set of microstates that we obtained from the maze task included all 
four canonical microstates (Fig. 2C). MTR, the microstate that showed increased GEV following the VMT, closely 
resembles MD, one of the four canonical microstates originally reported by Lehmann et al.37.

We used source modeling (sLORETA) to extrapolate cortical activity that was likely to be related to microstate 
MTRC. This microstate was associated with maximal cortical activity at the right superior parietal cortex (Fig. 2C).

EEG alpha and beta power increase after task performance.  The mean power spectrum averaged 
across channels was grossly similar across conditions (Fig. 3A), and a one-way ANOVA did not show any sta-
tistically significant group differences in mean delta (0.5–4), theta (4–7), alpha (8–11 Hz), sigma (12–15), beta 
(16–25), or gamma (26–40 Hz) power when averaged across all channels (F3,78 = 0.02, 0.1, 0.4, 0.5, 0.3, 0.5, respec-
tively; all p > 0.65).

However, this does not eliminate the possibility of localized differences in the EEG power. We therefore com-
pared the scalp topography in each frequency band during the quiet rest periods, as well as during the virtual 
maze (Fig. 3B) and control (Fig. 3C) tasks. In Control subjects, we found no significant difference in any EEG 
channel in any of the six frequency bands between the pre- and post-task rest periods. We also found no signifi-
cant differences in pre-training rest data between the experimental groups (not shown).

However, in subjects who completed the virtual maze, we found two disjoint clusters of electrodes that showed 
increased alpha power during quiet rest following training, an increase not seen in in Control participants (SnPM 
suprathreshold cluster test, p < 0.05; Fig. 3B). We also found a smaller set of left frontal electrodes that showed 
increased beta power during quiet rest following training again only in the maze task subjects and not controls 
(SnPM suprathreshold cluster test, p < 0.05).

Figure 2.  (A) VMT microstates. Topographic maps (red positive, blue negative) of the microstates derived 
from VMT training data in the Nap group, Wake group, and both groups combined. Six microstates were 
present in the EEG during VMT training for both Nap and Wake groups. In each analysis, one microstate (gold 
box) showed increased GEV in post-training rest compared to pre-training rest. In the analysis pooling all 
subjects who performed the VMT, five microstates were identified during VMT training. This set of microstates 
contains the canonical four microstates58, labeled here as A–D. (B) Fitting VMT microstates. In order to assess 
the presence of VMT-training microstates in rest and sleep, the six training microstates derived from the Nap 
group were fit to baseline rest, post-training rest, and subsequent N2 sleep in both the Nap (top) and Control 
(bottom) groups. Global explained variance (GEV) during baseline rest, post-training rest and N2 sleep is 
plotted for each training microstate (error bars: ± SEM; *SnPM p < 0.01). (C) Source modeling of MTRC. 
Standardized current density (calculated using sLORETA) for the MTRC microstate, thresholded at 0.003). Note 
activation in the superior parietal lobule.
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Nap structure.  During the nap, subjects spent 8.8 ± 5.4 minutes in N1 sleep, 45.2 ± 19.1 minutes in N2 sleep, 
17.8 ± 12.1 minutes in N3 sleep, and 10.6 ± 9.0 minutes in REM sleep. There were no statistically significant cor-
relations between sleep architecture during the nap and subsequent performance or improvement in the VMT.

Microstates, but not EEG power, correlate with post-sleep changes in task performance.  Over 
the course of the experiment, subjects who trained on the VMT tended to improve in performance, for time 
required to reach the exit, distance traveled to the exit, and the amount of backtracking in their path (Fig. 1C). 

Figure 3.  EEG power analyses. (A) Rest period power spectra. Power spectra were averaged over pre- and 
post-training rest periods; red = Control pre-training rest, blue = Control post-training rest; black = Nap 
pre-training rest, green = Nap post-training rest. There were no statistically significant differences between 
groups in any frequency band. (B) Topographic EEG maps of average power per channel per frequency band, 
normalized to the maximum power within each map for the combined Nap and Wake groups. White circles are 
a cluster of channels that showed an increase in resting alpha (8–11 Hz) or beta (16–25 Hz) power during post-
training rest compared to pretraining rest (SnPM, p < 0.05). (C) Topographic EEG maps of average power per 
channel per frequency band, normalized to the maximum power within each map for Control subjects.
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A repeated measures ANOVA revealed significant improvement in maze completion time across the 6 training 
and test trials (linear polynomial contrast: F1,25 = 11.96, p = 0.002). Although previous work using this task has 
demonstrated post-training nap mediated improvement in task performance15, here we found no differences in 
performance improvement between Nap and Wake subjects (p > 0.85 in t-tests for time, distance, and backtrack-
ing). This may have been due to part to sizable between-subject differences in improvement (Fig. 3).

Because previous work has shown that sleep EEG features may be correlated with memory even when there 
is not a clear overall impact of sleep on performance40, we asked whether the persistence of task-related EEG 
microstates correlated with task performance. Indeed, we found that the degree to which task-related microstate 
MTR increased during post-training rest predicted post-nap improvement, although the correlation was nega-
tive. During retest, Nap subjects who had greater increases in MTR GEV during rest covered more distance in 
the maze and backtracked more often (r12 = −0.60, p = 0.04 and r12 = −0.64, p = 0.02, respectively, Fig. 3, top). 
Given the correlation between these outcome measures, we corrected for multiple comparisons using the Dubey 
Armitage-Parmar method, which resulted in adjusted p values of padj = 0.047 and padj = 0.03 respectively41. There 
were no correlations between MTR and baseline training performance (r12 = 0.19, p = 0.54; r12 = 0.21, p = 0.50; 
r12 = 0.29, p = 0.34 for time, distance and backtracking respectively, Fig. 4, bottom). Correlations between the MTR 
GEV increase in N2 sleep and task improvement failed to reach significance (r12 = −0.36, p = 0.22; r12 = −0.50, 
p = 0.08; r12 = −0.47, p = 0.10; for time, distance traveled, and backtracking respectively). Wake subjects showed 
no improvement correlations with MTRW or MTRC increases, regardless of whether we looked at raw changes in 
GEV or percent changes (r12 = 0.02 for both; Fig. 4).

A number of control analyses confirmed that this relationship between microstates and memory performance 
was specific to MTR and memory improvement after sleep. Wake subjects showed no hint of improvement corre-
lations with MTRW or MTRC increases, regardless of whether we looked at raw changes in GEV or percent changes 
(r12 = 0.02 for both; Fig. 4). We found no correlation between total GEV from the complete set of VMT micro-
states in the baseline rest period and any measure of performance. Change in total microstate GEV for the com-
plete set from baseline rest to post-training rest was also not associated with VMT performance or improvement 
on retest. We found no significant relationships between total microstate GEV in post-training rest or N2 sleep 
and any measure of task performance during training or re-test. In addition, there were no significant correlations 
between alpha or beta EEG power changes and learning improvement post-nap. Finally, we detected no signif-
icant correlations between the alpha and beta EEG power changes and MTR GEV changes (Pearson’s r = 0.22, 
p = 0.45 for alpha and Pearson’s r = −0.17, p = 0.56 for beta).

Discussion
These data clearly demonstrate that an EEG topography observed during spatial learning is spontaneously pres-
ent during subsequent periods of quiet rest and sleep. To our knowledge, this is the first demonstration of a 
task-specific scalp EEG pattern being spontaneously expressed during post-learning rest. Interestingly, this 
microstate topography is associated with activity in regions of parietal cortex known to support spatial process-
ing42,43. However, contrary to our expectations, the presence of this microstate during rest was negatively corre-
lated with subsequent post-sleep improvement on this spatial memory task. As such, the interpretation of exactly 

Figure 4.  Correlations between increased post-training microstate GEV and subsequent change in VMT 
performance. Performance change (calculated as the change in performance from the last training trial to mean 
performance at test) is plotted for total distance travelled (left), backtracking (middle) and time to reach exit 
(right) against the change in MTR GEV for the VMT + Nap group (top) and the MVT + Wake group (bottom).
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what might be represented by the reappearance of this scalp EEG pattern remains unclear. Furthermore, our 
analysis was limited to the presence of particular scalp topographies and not sequences of neural firings. Still, our 
data are in broad agreement with single-cell recordings in rodent models and neuroimaging studies in humans 
that have demonstrated the phenomena of offline task “reactivation” during rest and sleep. Note that the lack of 
significant change in microstate GEV between the two rest periods in the control group should not be taken to 
indicate that PVT performance has no impact on microstates since a PVT training session occurred prior to the 
baseline quiet rest period.

There are two kinds of plastic changes in resting state EEG following learning.  Here, we report 
the first use of scalp EEG to demonstrate the continuation of task-related activity patterns during post-training 
rest. This agrees with results reported by other investigators using other neuroimaging methods10,44,45. In addi-
tion, the inclusion of a control task suggests that these EEG changes are task-specific, or related to task- switching 
from the PVT to the VMT. Therefore, we distinguish between two types of EEG plasticity. First, we report local-
ized increases in alpha and beta EEG power following learning that are unrelated to the power spectrum during 
training and unrelated to test performance. Studies of simulated driving indicate that increases in alpha and beta 
power are markers of fatigue46. We note that both driving simulation and our virtual maze task require extended 
use of mental systems for spatial navigation. Therefore, changes in the power spectrum may reflect the induction 
of fatigue, specifically in spatial navigation brain systems. In addition, we also report a second type of EEG change 
in which task-related spatial patterns persist into post-training rest, persist into subsequent sleep, and predict 
post-sleep change in performance on the VMT. Because of their substantially different characteristics and the fact 
that these changes are not correlated with each other, we propose that these two experience-dependent changes in 
the resting state EEG reflect separate, but co-occurring, neural processes. Thus, task training may produce multi-
ple reverberations in the post-training resting state EEG. Because N2 occurs later in time than post-training rest, 
further work would be necessary to determine if any differences between rest and N2 were due to time elapsed, 
as opposed to behavioral state per se.

The role of quiet waking in memory consolidation.  The appearance of task-related EEG activity dur-
ing rest could signify a role for quiet rest in memory consolidation. Indeed, it is increasingly clear that memory 
processing can occur during periods of quiet waking47,48. There are several reasons why waking rest might benefit 
memory. For one, the presentation of additional information can interfere with previously presented information, 
and hence it would be important to stabilize the original information as quickly as possible. For example, mem-
ory stabilization and consolidation of motor sequence learning can be disrupted by the presentation of a second 
sequence shortly after the original training49. When compared to active wake, periods of quiet waking can be rel-
atively free of additional stimuli that might demand cognitive resources and induce learning, thereby disrupting 
the offline processing of previously acquired knowledge.

At the same time, mechanistically, the transition from active waking to quiet waking is accompanied 
by decreased acetylcholine and slowing of the EEG, producing a brain state during quiet rest that is more 
“sleep-like”48,50. Indeed, neural processes occurring during periods of quiet waking are similar to those that lead 
to memory consolidation during sleep. This is seen in of the appearance of hippocampal sharp-wave ripples and 
offline replay during quiet rest51–53.

Previous work indicates that brain activity during post-training quiet rest can potentiate memory consolida-
tion44,48,49,54. Persistence of task-related patterns of hippocampal activity into post-encoding rest has previously 
been shown to be correlated with memory performance across waking45. However, the post-training resting state 
neural activity that is correlated with learning is not necessarily the same neural activity that occurs during task 
training. For example, slow oscillations (<1 Hz) during post-training rest are associated with improved mem-
ory in a declarative task while such oscillations are not thought to be associated with encoding48. In addition, 
sleep-dependent consolidation of a motor sequence is associated with increases in bilateral motor cortex con-
nectivity, even though this connectivity did not significantly change during task training54. Here, we report a 
training-induced change in quiet waking brain activity that is negatively correlated with memory performance 
following sleep. We suggest that the neural activity reflected in this microstate topography during quiet rest fol-
lowing a spatial learning task not only correlates with, but possibly shapes, the extent to which the task will 
subsequently be consolidated during sleep. This is in agreement with previous work that has shown that rest-
ing state functional connectivity immediately after task learning predicts subsequent sleep-dependent memory 
consolidation54.

MTR predicts subsequent sleep dependent memory consolidation.  Several models of sleep depend-
ent memory processing propose that during wake the brain encodes memories and during sleep the brain con-
solidates them. It is hypothesized that as part of this process, memories must be actively tagged or marked for 
consolidation54,55. How exactly this proposed tagging might occur remains unclear and it is tempting to consider 
the possibility that the changes in MTR that we report here are associated with the tagging process. However, the 
negative correlation between MTR and sleep-dependent consolidation makes it is unlikely that MTR is a direct 
EEG-correlate of the tagging of specific task-related memories. Future work is needed to clarify the relationship 
(if any) between recurrence of task-related EEG microstates and tagging.

There have been many attempts to identify functional correlates for the four canonical microstates17. The 
canonical microstate D, which closely resembles our MTR, has been linked to cognitive control, task-switching, 
and dorsal attention networks56,57. Therefore, our data suggest that training on the VMT may induce changes in 
activity within these networks that can be reactivated for several hours.
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In any case, our results suggest that the relationship between task-related activity during resting states and 
memory may more complicated than generally believed, and future work is needed to elucidate the relationship 
between EEG microstate reactivation and memory consolidation.

Conclusion
Here, we report the first observation of a task-related pattern in the scalp EEG that is also spontaneously pres-
ent during subsequent rest and sleep. Although our data are not directly analogous to the “reactivation” of 
memory studied in rodents on the cellular level, these observations are broadly consistent with the hypothesis 
that post-learning resting states are a time during which recent experience continues to be processed “offline”. 
Furthermore, these data suggest that scalp-recorded EEG may offer a fruitful, low-cost method for future research 
exploring the effect of learning on resting-state brain function.
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